

Identification of Features "Informative" for Clinical Outcome or Characteristic

- Gene(s) whose expression correlates with survival
- Protein(s) whose presence is associated with cancer
- SNP(s) whose presence is associated with favorable or toxic response to drug . . .

Informative Feature List Instability

- Multiple testing issues
 - 10,000 non-informative features each tested at 0.05 level of significance will produce 500 false positives
 - Typically use smaller testing level (e.g., 0.001) or more sophisticated procedures
- Size of list dependent on stringency of multiple testing corrections
- Low power under stringent multiple testing corrections
- Co-regulation of genes

Classifier or Multivariate Score

- Link multiplex marker measurements to clinical outcome or characteristic
- Function that associates a specimen with a class or assigns a continuous score based on inputted feature measurements
- Most scores eventually subject to cutpoints for clinical decision-making

(Focus here on classifier building.)

Feature List? Classifier

- Clustering method applied to feature set does not rigorously define a classifier (e.g., see Lusa et al, JNCI 2007 discussion of breast cancer subtypes)
 - · Results differ by clustering technique
 - Results sensitive to data normalization & centering
 - Results dependent on set of samples to which clustering methods are applied
 - Assignment of clusters to outcome class?
- Classifiers with similar performance may be developed from substantially different feature lists

Classification Methods

- Linear Predictor (for 2 classes) L(x) = w₁x₁ + w₂x₂ + . . . + w₁x₁ is a weighted combination of important features to which a classification threshold is applied
 - Examples: Linear discriminant analysis, compound covariate predictor, weighted voting method, support vector machines with inner product kernel, perceptrons, naive Bayes MVN mixture classifier
- Distance-based
 - Examples: Nearest neighbor, nearest centroid
- Generalizable to > 2 classes

(Simon, Journal of Clinical Oncology 2005)

Choice of Classification Approach

■ Comparative studies of class prediction methods (e.g., Dudoit et al, 2002) have shown simpler methods (LDA, NN) perform as well or better than more complex methods on very high-dimensional marker data (e.g. gene expression microarray)

Building a Classifier: Sample Size Considerations for "Training Data"

- Sample size = number of cases, NOT number of features (e.g., genes, proteins) measured
- Sample size determination for training set
 - Large enough to find sufficient number of informative features while controlling false positives (Dobbin and Simon, Biostatistics 2005; Dobbin et al, JNCI 2003)
 - Large enough so that expected accuracy of resulting classifier is within some tolerance of true accuracy (Dobbin and Simon, Biostatistics 2007; Dobbin, Zhao and Simon, Clin Cancer Res. 2008)
 - Few dozen to few hundred cases required depending on difficulty of prediction problem

Quantifying "How good is the classifier?"

- Estimate percent correct classifications ("classification accuracy")
- Survival differences or hazard ratios associated with classification (or with continuous risk score) of sufficient magnitude to be clinically meaningful
- Value added beyond standard clinicopathologic factors

Classification: Avoiding Pitfalls

- When number of potential features is much larger than the number of cases, can always fit a classifier to have 100% prediction accuracy on data set used to build it
- Estimating accuracy by "plugging in" data used to build a classifier results in highly biased estimates of prediction accuracy (re-substitution estimate)
- Internal and external validation of classifier are essential

Validation Approaches

- Internal: within-sample validation
 - Cross-validation
 - (leave-one-out, split-sample, k-fold, etc.)
 - Bootstrap and other resampling methods
 - See Molinaro et al (*Bioinformatics* 2005) for comparison of methods
- External: independent-sample validation

Limitations of Within-Sample Validation

- Frequently performed incorrectly
 - Improper cross-validation (e.g., not including feature selection)
 - Special statistical inference procedures required (Lusa et al, Statistics in Medicine 2007; Jiang et al, Stat Appl Genetics and Mol Biol 2008)
- Large variance in estimated accuracy and effect sizes
- Doesn't protect against biases due to selective inclusion/exclusion of samples
- Built-in biases? (e.g., lab batch, specimen handling, etc.)

Review of Microarray Studies Examining Associations With Cancer Clinical Outcome

(Dupuyand Simon, JNCI 2007)

- Detailed account of 42 studies published in 2004 (journals with impact > 6)
- 21/42 studies contained at least one of 3 basic flaws
 - Unstated, unclear, or inadequate multiple testing control
 - Claim of correlation between clusters and clinical outcome after clustering using genes selected for association with outcome
 - Incorrect cross-validation procedure resulting in biased estimation of prediction accuracy

There is no substitute for a well-designed, COMPLETELY INDEPENDENT validation study.

Steps to Validate Clinical Utility

- Achieve acceptable reproducibility of classification or score
 - Stringent component-wise reproducibility might not be necessary
 - Reference lab versus multiple labs
- COMPLETELY specify
 - Specimen acquisition and handling realistic for clinical use
 - Assay platform (e.g., reagents, chip, equipment)
 - Technical protocol, including quality criteria
 - Data pre-processing
- Form of classifier or risk score, including cutpoints

Steps to Validate Clinical Utility

- Design prospective study
 - Patients representative of target population (e.g., age, stage)
- Specific treatment context
- Adequate sample size
- Pre-planned analysis to establish fitness for intended clinical use
 - Clinical outcome measure (e.g., overall survival, distant disease-free survival, tumor response)
 - Performance metrics
 - Percent accuracy
 - Survival curve separation

Summary

- Considerable investment of time and resources
- Expertise required: clinical, laboratory, biology, statistics, computational
- Attention to clinical feasibility and affordability
- Clinical impact must be sufficiently high!

Acknowledgements

- Richard Simon
- Kevin Dobbin
- Lara Lusa
- Members of the Biometric Research Branch at NCI
- Members of the Cancer Diagnosis Program at NCI